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Solution to Assignment 6

Section 7.2

18. If f ≡ 0, then result is trivial. Otherwise, since f is continuous on [a, b], there exists
x0 ∈ [a, b] s.t. sup f = f(x0) > 0. By continuity, for each small ε > 0, there is some δ such
that |f(x)− f(x0)| < ε, for all x ∈ [x0 − δ, x0 + δ] ∩ [a, b]. Hence

δ(f(x0)− ε)n <
∫

(x0−δ, x0+δ)∩[a,b]

fn ≤
∫ b

a
fn ≤

∫ b

a
f(x0)

n = f(x0)
n(b− a)

δ1/n(f(x0)− ε) < Mn =

(∫ b

a
fn
)1/n

≤ f(x0)(b− a)1/n

Note that limn→∞ a
1/n = 1 ∀ a > 0. Letting n→∞, by the squeeze theorem,

f(x0)− ε ≤ lim inf
n→∞

Mn ≤ lim sup
n→∞

Mn ≤ f(x0)

Letting ε→ 0 , limn→∞Mn = f(x0) = sup{f(x) : x ∈ [a, b]}.

19. Let Pn be the equal length partition of [−a, 0],−a = x0 < x1 < · · · < xn = 0, where
xj = −a+ ja/n, j = 0, · · · , n. Then we have∫ 0

−a
f = lim

n→∞

∑
j

f(xj)
a

n
,

see Theorem 2.6. On the other hand, −xj , j = 0, · · · , n, becomes a partition Qn on [0, a].
Therefore, ∫ a

0
f = lim

n→∞

∑
j

f(−xj)
a

n
.

Using f(−x) = f(x), we see that∑
j

f(−xj)
a

n
=
∑
j

f(xj)
a

n
,

hence ∫ 0

−a
f =

∫ a

0
f .

When f is odd, follow the same line but now using
∑

j f(−xj)
a

n
= −

∑
j f(xj)

a

n
to get

∫ 0

−a
f = −

∫ a

0
f .
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Supplementary Exercise

1. Let f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0}. Show that f+ and f− are both
integrable when f is integrable on [a, b].

Solution. Use that relation f+(x) =
1

2

(
|f(x)|+ f(x)

)
, and f−(x) =

1

2

(
|f(x)|− f(x)

)
and

the integrability of |f |, see Theorem 2.8(d).

2. Let g be differed from f by finitely many points. Show that g is integrable if f is integrable
over [a, b] and they have the same integral over [a, b].

Solution. For ε > 0, find a partition P so that∑
P

oscjf∆xj < ε/2 .

Let a1, · · · , am, be the points g and f differ. They belong to at most 2m many subintervals
of P . Hence ∑

j

oscjg∆xj ≤
∑
P

oscjf∆xj + 2M × 2m× ‖P‖ .

Now we can refine the length of P so small that 4Mm‖P‖ < ε/2. Then∑
j

oscjg∆xj < ε/2 + ε/2 = ε ,

so g is integrable. Now, let Pn with ‖Pn‖ → 0 and choose tags equal to none of these aj ’s.
Then S(g, Ṗn) = S(f, Ṗn), so their integrals are equal as n→∞.

Alternate proof. Let h = g − f so that h is equal to zero except at finitely many points.
By Theorem 2.11, h is integrable and its integral is equal to 0. Therefore, g = f + h is
integrable and ∫ b

a
g =

∫ b

a
(f + h) =

∫ b

a
f +

∫ b

a
h =

∫ b

a
f .

3. Let f be non-negative and continuous on [a, b]. Show that
∫ b
a f = 0 if and only if f ≡ 0.

Solution. It suffices to show if f is not identically zero, then its integral is positive.
Suppose there is some x0 ∈ [a, b] at which f(x0) = α > 0. By continuity, there is some
small δ > 0 such that f(x) ≥ α/2 for all x ∈ I ≡ [x0 − δ, x0 + δ] ∩ [a, b]. Therefore,∫ b

a
f ≥

∫
I
f ≥

∫
I

α

2
=
δα

2
> 0 .

4. Order the rational numbers in [0, 1] into a sequence {zn} and define

ϕ(x) =
∑

{j, zj<x}

1

2j
.

Show that ϕ is continuous at every irrational number but discontinuous at every rational
number in (0, 1).
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Solution. Let x be rational. Then x = zk for some k. From the definition of φ we
immediately obtain φ(z+k )− φ(z−k ) = 1/2k, so it has a jump at zk. On the other hand, for
ε > 0, we fix a large j0 such that

∑∞
j=j0

2−j < ε. The finite points z1, · · · , zj0 are disjoint
from x and we can find some δ > 0 such that (x−δ, x+δ) does not contain any z1, · · · , zj0 .
That is, zj ∈ (x− δ, x+ δ) implies j > j0. It follows that for y ∈ (x− δ, x+ δ), y > x,

0 < φ(y)− φ(x) =
∑

{j: x≤zj<y}

1

2j
≤

∞∑
j=j0+1

1

2j
=

1

2j0
< ε .

Similarly, we have 0 < φ(x)− φ(y) < ε for y ∈ [x− δ, x).

Note. This function is strictly increasing. Since monotone functions are integrable, this
example shows how complicated an integrable function could be. It has countably many
discontinuity points spreading densely over the interval. Thomae’s function is another
example of the same nature, although it is not monotone.

5. Give two integrable functions f and Φ so that Φ ◦ f is not integrable. Hint: Take f to be
the Thomae’s function.

Solution. Take f to be the Thomae’s function which has been shown to be integrable on
[0, 1]. Next consider Φ(x) = 0 if x = 0 and Φ(x) = 1 otherwise. Φ is bounded and has only
one discontinuity point at x = 0 and hence integrable. However, the composite function
Φ ◦ f satisfies Φ ◦ f(x) = 1, x ∈ Q and Φ ◦ f(x) = 0 otherwise. It is not integrable, see
Example 2.2.

6. Let f ∈ R[a, b] and g ∈ C1[c, d] where f [a, b] ⊂ [c, d]. Show that the composite g ◦ f ∈
R[a, b]. Here C1 means continuously differentiable.

Solution. By MVT,

g(f(x))− g(f(y)) = g′(c)(f(x)− f(y)) ,

where c is between f(x) and f(y). By assumption g′ is continuous here |g′| ≤M for some
M . We have ∑

j

oscjg ◦ f∆xi ≤M
∑
j

oscjf∆xj ,

and the desired conclusion comes from the second criterion.

Note: As a consequence of this property, the functions |f |, fn (n ≥ 1), ef , sin f, etc, are
all integrable when f is integrable.

7. (Optional). Let f ∈ R[a, b] and g ∈ C[c, d] where f [a, b] ⊂ [c, d]. Show that the composite
g ◦ f ∈ R[a, b]. Hint: For ε > 0, fix δ0 such that |g(z1) − g(z2)| < ε for |z1 − z2| < δ0.
For ε, δ0 > 0, there exists a partition P such that

∑
j oscIjf∆xj < εδ0. Then apply the

Second Criterion.

Solution. Given ε > 0, we want to find a partition P such that∑
j

oscIjΦ(f(x))∆xj < ε .

Indeed, letting M = sup |f |, Φ is uniformly continuous on [−M,M ]. Therefore, there
exists some δ such that |Φ(z1)− Φ(z2)| < ε whenever |z1 − z2| < δ, z1, z2 ∈ [−M,M ]. For
ε1 = εδ > 0, by the Second Criterion we can find a partition P on [a, b] such that∑

j

oscIjf∆xj < ε1 .
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On any one of those subintervals over which oscf is less than δ, we have osc Φ ◦ f is less
than ε. On the other hand,

δ
∑
j

′∆xj ≤
∑
j

′oscIjf∆xj < ε1 ,

where
∑′ denotes the summation over those subintervals the osc of f is greater than or

equal to δ. Therefore, ∑
j

′∆xj ≤
ε1
δ

= ε .

Putting things together, we have∑
j

osc Φ ◦ f∆xj =
∑
j

′oscΦ ◦ f∆xj +
∑
j

′′oscΦ ◦ f∆xj ≤ C1ε+ (b− a)ε ,

where
∑′′ denotes the summation over those subintervals where the osc of f is less than

δ and C1 is the oscillation of Φ over [−M,M ]. Now we can adjust (C1 + (b− a))ε to ε.

Note: This result is more general than the previous one.

8. Let f be a continuous function on [a, b] and g a nonnegative continuous function on the
same interval. Prove the mean-value theorem for integral:∫ b

a
f(x)g(x)dx = f(c)

∫ b

a
g(x)dx,

for some c ∈ [a, b].

Solution. The case is trivial when g ≡ 0. So we assume that g > 0 somewhere so that its
integral is positive over [a, b]. Then

∫ b
a g(x) dx > 0. Let M = sup f, m = inf f . We have

m

∫ b

a
f ≤

∫ b

a
fg ≤M

∫ b

a
f ,

implies that ∫ b

a
fg
/∫ b

a
g ∈ [m,M ] .

As f is continuous, its range f([a, b]) = [m,M ]. Therefore, there exists some c ∈ [a, b] such
that

f(c) =

∫ b

a
fg
/∫ b

a
g .

Note. Here we have used the fact that the image of an interval under a continuous function
is again an interval. See Theorem 5.3.9 in [BS].

9. Evaluate the following limits:

(a)

lim
n→∞

( 1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

)
;

(b)

lim
n→∞

(n!)1/n

n
.



Spring 2018 MATH2060A 5

Solution. (a) We observe

1

n+ 1
+ · · ·+ n

n+ n
=

1

n

n∑
j=1

n

n+ j
=

n∑
j=1

1

1 + j/n
.

Using the integrability of the function f(x) = 1/(1 + x), we see that

lim
n→∞

( 1

n+ 1
+ · · ·+ n

n+ n

)
=

∫ 1

0

1

1 + x
dx = log(1 + x)

∣∣∣1
0

= log 2 .

(b) Taking log,

1

n
log n!− log n =

1

n

n∑
j=1

(
log j − log n

)
=

1

n

n∑
j=1

log
j

n
.

Letting g(x) = log x, x ∈ [0, 1],

lim
n→∞

log
(n!)1/n

n
= lim

n→∞

1

n
log n!− log n = lim

j→∞

1

n

n∑
n=1

log
j

n
=

∫ 1

0
log xdx = −1 .

Hence

lim
n→∞

(n!)1/n

n
= e−1 .

10. (Optional)

(a) Establish the Cauchy-Schwarz Inequality in integral form: For integrable f and g on
[a, b], ∫ b

a
|fg| ≤

√∫ b

a
f2

√∫ b

a
g2.

(b) Deduce the following Cauchy-Schwarz Inequality for vectors

n∑
k=1

|akbk| ≤

√√√√ n∑
k=1

a2k

√√√√ n∑
k=1

b2k,

and equality holds.

Solution. Consider the expression ∫ b

a
(f − tg)2 ,

which is non-negative for all t ∈ R. It is equal to

p(t) ≡
∫ b

a
f2 − 2

(∫ b

a
f

∫ b

a
g

)
t+

(∫ b

a
g2
)
t2 ≡ A+Bt+ Ct2 ,

which is non-negative for all t. The discriminant of this quadratic polynomial must be
non-positive, that is, B2 − 4AC ≤ 0,the inequality holds.
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11. (Optional.) Let J be a convex function on some [−M,M ] and f ∈ R[0, 1] satisfying |f(x)| ≤
M . Establish Jensen’s Inequality in integral form

J

(∫ 1

0
f(x)dx

)
≤
∫ 1

0
J(f(x))dx .

Solution. Let Pn be the equal-length partition of [0, 1] into n many subintervals. Since∑
j ∆xj = 1, we can regard each S(f, Ṗn) =

∑
j f(j/n)1/n as a convex combination, so

J
(
S(f, Ṗn)

)
≤
∑
j

J(f(j/n))
1

n
.

Letting n→∞, by the continuity of J , we get the Jensen’s Inequality as the limit.


